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Blood from 1209 individual cod was sampled from nine localities in the Northeast Atlantic, and
analysed using agar gel electrophoresis (AGE) and isoelectric focusing (IEF) to reveal individual and
population variation in haemoglobin genotypes. The second aim of the study was to compare our data
with data collected some 30 years ago in the same area to investigate possible directional selection. A
new haemoglobin polymorphism of Atlantic cod was documented in samples from Danish watersusing
IEF electrophoresis (pH 5.5-8.5) and, in addition to the five genotypes seen in earlier studies, 11
subtypes are described. Significantly different genotype distributions were found between the samples
from northern Norway on the one hand and southern Norway and Danish waters on the other, and the
frequency of the Hb-I1(1) alele increased from north to south. With the possible exception of two
samples, the frequency of the main haemoglobin genotypes was found to be very similar to
corresponding frequencies described in these areas three decades ago. The frequencies of the Hb-I
subtypes off Norway varied among the sampling sites and were only found in Norwegian coastal cod
with increasing frequency from north to south. In the Danish samples, 11 novel Hb-I subtypes were
found and are described.
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INTRODUCTION

A considerable number of studies on the genetic struc-
ture of cod, Gadus morhua, in Norwegian waters have
been performed, revealing findings that appear to be
conflicting. The earliest studies (Frydenberg & al. 1965;
Mgiler 1966, 1968, 1969) focused on haemoglobin,
serum transferrin and blood types. Based on these
markers, Mgller (1969) concluded that two populations
of cod inhabit Norwegian waters, i.e. Arcto-Norwegian
(AN) and Norwegian coastal (NC) cod. On the basis of
his observations, Mdller (1969) hypothesized that the
AN and the NC forms of cod represent sibling species.
This has been described as the “historical” hypothesis
(Arnason & Palsson 1996). Furthermore, Frydenberg &
al. (1965) reported considerable subdivision of cod into
several local populations, based on haemoglobin.
Williams (1975) argued that the differences described
by Mgller (1969) were the result of strong natura
selection (i.e. the “selection” hypothesis). Later studies
have al shown substantial variation in frequency dis-
tributions of cod haemoglobin genotypes in Norwegian
waters (Gjasader & al. 1992; Dahle & Jarstad 1993;
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Nordeide & Pettersen 1998) in line with the historical
hypothesis.

Sick (1965) demonstrated differencesin haemoglobin
frequency between the Baltic and the Danish Belt Sea,
an area characterized by a steep salinity gradient from
near oceanic salinities in the North Sea to the brackish
Baltic Sea. Hismain conclusion wasthat there were two
well-defined cod populations (Belt Sea and Baltic Sea)
with a narrow zone of pure mechanical mixing. These
findings were challenged by Moth-Poulsen (1982), as
alozyme studies indicated the presence of four distinct
populations in this area and a potentia intraspecific
hybrid zone. Recently, this was supported (Nielsen &
a. 2003) in a study based on DNA microsatellites that
indicated a hybrid zone in the transition area between
the North Sea and the Baltic proper. In the present
study, we investigated the haemoglobin frequencies in
cod in the transient areafound in these previous studies.

Fyhn & al. (1994) documented a new Hb-I poly-
morphism using isoelectric focusing (IEF) electropho-
resis, and described new phenotypes. They distinguished
the AN cod from NC cod by an absence of double bands
for both Hb-1(/2) and Hb-1(2/2) genotypes. The
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% existence of such subtypes in other parts of the cod
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SRRRERIIIZIS addition, subtype variations in haemoglobin are
described and preliminary observations on subtype
T frequencies are given. The results are discussed in
g & ; relation to application in studies of natural cod
%’ g é - 5 § uﬁ % § % o $ . $ populations and to possible use in aquaculture.
ﬁgé é§$%é%é§§m§&"m§g MATERIAL AND METHODS
=1 SAMPLING
= DN O MM~ Moo NO NN
85| 28 4R8I 29539RE Blood samples from cod (n=1209, Table 1, Fig. 1)
were collected along the Norwegian coast (seven sam-
§ < < pling sites) and from the Danish Belt Sea (two sampling
§ § § § § § § - = % % § 3 sites) in the period March-October 1994. All
% g % % % % %g E 8 % % % % S samples were kept on ice until analysed within 96 h
B888888555388 = after sampling. When possible, biological |n_format|on
g| 222222>9I<3F00=3 (length and sex) was collected and otoliths were
O AN NANNNS TN~ sampled for age determination. For the mid- and north
Norway samples (sample numbers 1-9), visual inspec-
5 %ggggggmﬂggggmm tion of the otoliths was used to classify each individual
7| BExsSIELooNET T | asNCor AN cod (Rollefsen 1934). Most samples were
ol ZFEEEEE S collected close to the estimated spawning time in each
2| 5892883855223 0838 area. To follow the mixing of AN and NC cod at known
% % % 8 % 8 8 % 8 8 % 8 £ 8 8 8 < Spawning grounds, samples from Henningsvaastrau-
g g men were gathered during a 7 day consecutive period in
o LIACYBRYLINISIEIFS i the spawning season (Table 1) and these samples were
5 < - - S kept separate during further anaysis. Samples from
§ N S Riser (south Norway) were sampled at a different time
g TETEE B of the year and were kept separate during the analysis.
§ % % % % % § Samples from @ygarden (west Norway) were not
ﬁ BERE G Z  pooled, as these represent two independent samples
= 55 § § § § g & o | 9 collected during a 2 week period.
°| 5| 55E2EoEss 23l
5 § T EEEEE §§v§ 5 @@ §§ 8 AGAR GEL ELECTROPHORESIS (AGE)
£ J | OOITIITIIHaZESIRNQ g
a 8 All samples were analysed by AGE and the method
- g S described by Sick (1961) was applied with modifica-
% ge o tions (Jarstad 1984). Smithies buffer, pH 8.6 was used
s L% 2| TNOTwoeroegdNBI8 | Z asan dectrode buffer, and diluted 1:1 with distilled
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Fig. 1. Sampling locations of Atlantic cod in Norwegian waters
and in the Danish Belt Sea (see Table 1 for details).

water for the gel buffer. A 2% agar concentration was
used in the gels (Agar Noble, Difco Laboratories). The
samples were run at 200 V (20 mA) for 90 min. During
the run, the gels were cooled with ice water circulating
in a cooling plate beneath the agar gel. The gels were
stained with Brilliant Blue G Quick stain in perchloric
acid and then destained by diffusion (14% acetic acid,
7% methanol) overnight.

IEF

|EF was carried out on all samples in accordance with
the instruction manuas using pre-cast slab gels
(Ampholine PAG plates, Pharmacia, pH 5.5-8.5) with
modifications described by Fyhn & al. (1994). The gels
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were pre-focused for 30 min. After pre-focusing, filter
papers containing haemolysate were applied on the
anodic side of the gel. The filter papers were removed
after 10 min and the gel wasrun for 110 min or until the
haemoglobin bands were clearly visible. The voltage
used was 1600V. At the anode side, a 0.4 mol I~ *
HEPES buffer (28 ml of distilled water and 2.89g
HEPES) was used, and at the cathode sidea 0.1 mol 1
NaOH buffer (0.4 g NaOH dissolved in distilled water
up to 100 ml). The same staining procedure was used as
for AGE and the haemoglobin components were
identified manually using a transmitted light. In AGE
a constant pH is applied, but in IEG a pH gradient is
applied so that each protein component can be studied
at itsisoelectric point (i.e. where the protein is neutral).
These two methods were used in combination when
studying both main and subcomponents of proteins in
the present study.

STATISTICAL METHODS

The calculations and statistics were performed using
BIOSYS-1 (release 1.9, Swofford & Selander 1981).
A chi-squared goodness of fit test (Zar 1984) was
performed on each sample to test the accordance
between observed and expected Hardy-\Weinberg equi-
librium. Levene's formula for small samples was used
as the chi-squared test is sensitive to low expected
genotype frequency. This test was also used to test for
heterogeneity within and between sampling sites. To
describe the genetic stability within each sample site,
Selander’s D test statistic for heterozygote deficiency or
excess was calculated for each sample site.

The range of genetic distance was calculated by
pairwise comparisons of the sample units (Swofford
& Selander 1981) using Nei's (1972, 1987) genetic
distance measure. A hierarchical cluster analysis
(Swofford & Selander 1981) was performed using the
unweighted pair-group method with arithmetic aver-
aging (UPGMA). Bonferroni corrections (Johnson &
Field 1993) of the significance level (o =0.05) were
applied when testing for significant departures from
Hardy-Weinberg expectations.

RESULTS
AGE

By AGE, the three different electrophoretic patterns
described by Sick (1961) were found: Hb-1(1/1), Hb-
1(1/2) and Hb-1(2/2) (most anodic), and interpreted as
the two homozygotes and the heterozygote in a two
alele system (Fig. 2A). The chi-squared goodness of fit
test did not reveal any significant difference between
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Fig. 2. A schematic representation of the patterns of components from agar gel electrophoresis and isoelectric focusing of
haemoglobins of cod. (A) For agar gel electrophoresis, the originis at the anode (+) and the proteins migrate towards the cathode
(9, asindicated by the arrow. 1/1, 1/2 and 2/2 show the genotypes Hb-1(1/1), Hb-1(1/2) and Hb-1(2/2), respectively. Types4 and 5
show the pattern of the “rare” haemoglobin types found in the samples from west and north Norway. (B) For isoelectric focusing,
the origin is approximately 2 cm from the anode side (i.e. at pH 5.5) and the proteins migrate towards their isoel ectric point on the
pH gradient. Subtypes marked with an asterisk are only found in Danish waters.

Table 2. Observed and expected (in parentheses) phenotypic distributions and alelic frequencies of the Hb-I locus analysed with
agar gel electrophoresisin different cod populations.

Genotype Allele frequency
Sample
number n Hb-1(1/1) Hb-1(1/2) Hb-1(2/2) 4 5 Hb-1(1) Hb-1(2) X2 p
1 46 6 (6.2 22 (21.7) 18 (18.2) 0.37 0.63 0.01 0.92
2 23 1(15) 10 (9.1 12 (12.5) 0.26 0.74 0.26 0.61
3 71 6 (5.1) 26 (27.7) 37 (36.1) 1 1 0.27 0.73 0.28 0.60
4 85 3(34) 28 (27.2) 52 (52.4) 1 1 0.20 0.80 0.07 0.79
5 95 4 (3.6) 29 (29.9) 61 (60.6) 1 0.20 0.80 0.08 0.77
6 96 1(24) 29 (26.1) 66 (67.4) 0.16 0.84 119 0.28
7 96 111 19 (18.8) 74 (74.1) 2 0.11 0.89 0.02 0.90
8 20 3(3.7) 11 (9.7) 5(5.7) 1 0.45 0.55 0.39 0.53
9 102 11 (10.7) 44 (44.7) 46 (45.7) 1 0.33 0.67 0.02 0.88
10 101 38 (36.7) 46 (48.6) 17 (15.7) 0.60 0.40 0.28 0.60
11 90 26 (30.5) 53 (44.0) 11 (15.5) 0.58 0.42 3.82 0.06
12 66 30 (29.9) 29 (29.2) 7 (6.9) 0.67 0.33 0.01 0.95
13 129 43 (44.1) 65 (62.9) 21 (22.1) 0.59 0.41 0.15 0.70
14 97 37 (39.5) 50 (45.0) 10 (12.5) 0.64 0.36 1.23 0.27
15 92 27 (28.5) 48 (45.1) 16 (17.5) 1 0.56 0.44 0.39 0.54
n —Sample size.

x?1-statistic for deviations from expected Hardy-Weinberg phenotypic distributions and p values for the % -statistic. Rare main
groups (4 and 5) are listed in this table but not included in the calculations.
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Fig. 3. An unweighted pair-group method with arithmetic averaging (UPGMA) dendrogram of Nei’s (1972) genetic distance
matrix among the 15 sampling sites analysed with agar gel electrophoresis in the present study.

observed and expected Hardy-Weinberg distributions
in any sample (Table 2). One borderline case was found
(Risar 2, p=0.06), but when corrected for multiple tests
(«=0.05/15=0.003) the deviation was no longer
significant. Likewise, a comparison of observed and
expected heterozygosities and an exact probability test
revealed no significant heterozygote deficiencies in the
samples.

In addition to the three common types, two rare
genotypes (types 4 and 5 in Fig. 2A) were found at low
frequencies in samples from west and north Norway
(Table 2). These genotypes have additional bands on
the anodic side of the usual Hb-I bands, and they have
been described as the result of variation at a locus that
controls another polypeptide chain in the haemoglobin
molecule (Manwell & Baker 1970). They are not
treated further here.

The Hb-I* dlele frequencies were significantly
different (21, = 387.4, p<0.001, Table 2) among the
samples, showing that different populations were
sampled. The frequency of Hb-1(1) was low in the
northern samples and, with the exception of two
Henningsvaastraumen samples, an apparent cline with
increasing frequency of Hb-1(1) from north to south was
observed (Table 2), in line with previous studies and
first described by Frydenberg & al. (1965). The highest
frequency of Hb-1(1) was observed in one of the
samples from the Danish Belt Sea (Table 2). The

samples from Henningsvaarstraumen were collected in
the spawning season in one of the main spawning areas
of AN and NC cod. A homogeneity test of these five
successive samples showed that the frequency of the
Hb-I* allele differed among these samples (3%, = 15.5,
p<0.01, Table 2). The dendrogram constructed from
the matrix of pairwise genetic distance values
(UPGMA) revedled two clearly distinct groups, as
samples from north and mid-Norway represented one
group, whereas west and south Norway and the Danish
Belt Sea samples represented another (Fig. 3).

No age-, size- or sex-dependent frequencies were
observed (p>0.15).

IEF

On |EF gels, haemoglobin of the genotypes Hb-1(1/2)
and Hb-1(2/2) from Norway displayed between 10 and
13 bands (Fig. 2B), whereas the Hb-1(1/1) genotype
displayed eight bands (Fig. 2B). Furthermore, in Hb-
1(/2) and Hb-1(2/2), the position and strength of the
band components on the IEF gels varied highly. No
variation was found in the Hb-1(1/1) genotype in
samples from Norway. Accordingly, the Hb-1(1/1),
Hb-1(1/2) and Hb-1(2/2) genotypes could be divided
by the position and strength of the IEF band patterns
into five subtypes: Hb-1(1/1)a, Hb-1(1/2)a, Hb-1(1/2)b,
Hb-1(2/2)a, and Hb-1(2/2)b (Fig. 2B). Here, “a" is used
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Table 3. Observed numbers of haemoglobin subtypesin all 15 sample units. See text for details on classification.

Hb-1(1/1) Hb-1(1/2) Hb-1(2/2)
Sample
number 1/la 1/la* VUlb* 12a 1/2b 12a* 1/2b* 1/2c* 1/2d* 1/2e¢ 1/2f* 2/2a 2/2b 2/2a* 2/2b* 2/2c*
1 6 21 1 6 2
2 1 10 11 1
3 6 25 1 36 1
4 3 28 1 49 3
5 4 29 61
6 1 29 8 1
7 1 19 74
8 3 11 5
9 11 2 2 41 5
10 38 2 4 16 1
11 26 49 4 8 3
12 30 6 5 5 3 4 3 1
13 42 1 34 11 6 5 10 5 4
14 37 46 4 8 2
15 27 38 10 14 2
Total 164 72 1 389 27 40 16 13 11 8 4 404 21 13 6 4

for the most common subtype and “b” for the second
most common (Table 3).

The samples from the Danish Belt Sea displayed
different band patterns compared with the Norwegian
samples. Here, six Hb-1(1/2) and three Hb-1(2/2)
subtypes were found (Fig. 2B). In addition, a rare
Hb-1(1/1) subtype was found in one individua from
Lillebelt [Hb-1(1/1)b* in Fig. 2B]. These subtypes
are named: Hb-l1(1/1)a*, Hb-1(1/1)b*, Hb-I(1/2)a*,
Hb-1(1/2)b*, Hb-1(1/2)c*, Hb-1(1/2)d*, Hb-1(1/2)e*,
Hb-1(/2)f*, Hb-1(2/2)a*, Hb-1(2/2)b*, and Hb-1(2/
2)c*. Here also, “a is used for the most common
subtype, “b” for the second most common, etc. The
observed frequency distributions of these subtypes are
shown in Table 3. The haemoglobin subtypes were
represented in al sample units apart from samples 5, 7
and 8 (Table 3). The subtypes were not found in
individuals classified by otoliths as AN. Accordingly,
al AN individuals (n=604) were removed when
testing for significant differences in the frequencies of
the subtypes among the Norwegian sampling units. The
remaining individuals (n=605) were classified as
belonging to north, mid-, west or south Norway in
accordance with the results seen in the main band
polymorphism at the Hb-I locus. Using this classifi-
cation, a significantly different subtype frequency was
found (y% = 15.3, p<0.05, Table 4) among the samples
of NC cod.

DISCUSSION

The present data are in line with many other studies
that have indicated a subdivision of Atlantic cod in

Table 4. Observed frequencies of Hb-I subtypes analysed with
isoelectric focusing in different cod populations in Norwegian
waters, after removing all Arcto-Norwegian cod based on
otolith examination. The samples were grouped into four
categories (north, mid-, west or south Norway) based on
geographical location and agar gel electrophoresis classifi-
cation of the samples.

Group Hb/l(/2)a Hb/I(1/2)b Hb/I(2/2)a Hb/l(2/2)b
A 0.40 0.01 0.56 0.03
B 0.50 0.02 0.43 0.05
C 0.68 0.11 0.18 0.03
D 0.72 0.06 0.19 0.03

A — North Norway (sample units 1-7); B — Mid-Norway
(sample units 8 and 9); C —West Norway (sample units 14 and
15); D —South Norway (sample units 10 and 11).

Norwegian waters into AN and NC (Frydenberg & al.
1965; Mgller 1966, 1968, 1969; Jarstad 1984; Dahle
1991; Fyhn & a. 1994; Fevolden & Pogson 1995, 1997).
Pogson & Fevolden (2003) used the pantophysin
(Pan 1 =Syp 1) locus of Atlantic cod to examine the
role of contemporary selection in maintaining signifi-
cant allele frequency differences. Their results failed to
support either the historica (Mgller 1969) or the
selection (Williams 1975) hypotheses, but were con-
sistent with a recent separation of coastal and Arctic
populations rendered more visible by the action of
diversifying selection in the two environments. Based
on their findings, Pogson & Fevolden (2003) suggested
that AN and NC populations may be more independent
than indicated by previous studies.

But what evolutionary mechanism could be acting on
these genes causing the divergence between genotypes
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and populations? Several mechanisms can be postu-
lated. First, this might be an example of balanced
polymorphism. Genotype-dependent differences in
physiological performance seen in earlier studies on
Atlantic cod (Karpov & Novikov 1980; Neevdd & a.
1992) may indicate differential selection pressure on
the controlling genes. However, such selection pressure
may be balanced by other factors. Imsland (1999)
investigated age at first maturation among the haemo-
globin genotypes of turbot. For both sexes, fewer fish of
the Hb-1(/1) and Hb-1(1/2) genotypes matured at 2
years of age compared with the Hb-1(2/2) genotype.
These findings were in accordance with genotypic
growth properties (Imsland & a. 1997, 2000), and
differences in oxygen affinity (Imsland & a. 1997
Samuelsen & a. 1999). Taken together these findings
may imply a balanced polymorphism of the haemoglo-
bin in turbot. Whether there exists a similar balancing
systemin cod is still unresolved. However, Salvanes &
Hart (2000) compared the competitive performance of
cod of the three main Hb-l genotypes. Randomly
chosen 1-year-old cod were tested for individual
responses to prey offered sequentially and found that
the most successful fish were usually among the first to
feed and tended to possess haemoglobin genotype
Hb-1(2/2). Their findings indicate that there exists a
link between genotypic growth and feeding behaviour.
Taken together, the differences in growth, oxygen
affinity and competitive performance in the cod
haemoglobin genotypes could be viewed as an example
of balanced polymorphism.

Second, differences in haemoglobin frequencies
could be an adaptation to variable environmental
conditions. Atlantic cod is the magjor demersal fish
resource distributed on the continental shelves and
banks on both sides of the North Atlantic Ocean
(Imsland & Jonsdbttir 2003), distributed in a variety
of temperature conditions (e.g. Brander 1995). Brix &
al. (1998) found the highest oxygen affinity for Hb-1(2/
2b), suggesting that this type is a more efficient oxygen
binder at high temperatures, supporting the results of
Fyhn & al. (1994) that this type is more restricted to
coastal and warmer water and thus a better marker of
the coastal cod population. Our data are in line with
these findings, as we found this type more restricted to
coastal and warmer water. This might suggest that the
sub-band polymorphism could be used as a population
marker in cod and that the different subgroups represent
adaptation to specific environmental conditions (here
temperature). In the present study, the haemoglobin
subtype system varied between sampling groups in
Norwegian waters (Table 4). Furthermore, the totally
different subtype system found in the Danish Belt Sea
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(Fig. 2B, Table 3) might suggest that the sub-band
polymorphism could be used as a population marker in
cod and that the different subtypes represent adaptation
to specific environmental conditions (possibly tempera-
ture). Inturbot, six haemoglobin subtypes were recently
described (Imdand & al. 2003) and indicated that
differences in frequencies of these subtypes varied
among the sampling sites in line with different
temperature ranges. Furthermore, the sub-band poly-
morphism in cod could also represent adaptation to
other environmental conditions, e.g. oxygen availabil-
ity, as differences are found in oxygen affinity between
the main groups and one subtype in Atlantic cod (Brix
& a. 1998) and between the three main haemoglobin
genotypes in turbot (Imsland & al. 1997; Samuelsen &
a. 1999). However, as long as the inheritance mode of
this system is unresolved, utilization of the subtypes as
population markers should be done with caution.

Similar sub-bands as reported in the present study
have been documented by Fyhn (1991) and Fyhn & d.
(1994) for cod, and suggested as a marker for NC cod
versus AN cod populations, as sub-bands were not
found in cod from the Barents Sea or the Faeroe Bank.
In their study, Fyhn & al. (1994) documented five
subtypes, of which two were characterized by sub-
bands. In the present study, wereport ahigh variationin
the sub-bands of cod haemoglobin from the Danish Belt
Sea and suggest 11 new subtypes that are only
represented in this area. Furthermore, a cline in the
frequencies of the subtypes, as higher frequencies in
west and south Norway compared with Lofoten and
north Norway, is indicated. Brix & al. (1998) investi-
gated the oxygen affinity of four of the haemoglobin
genotypes found in cod [Hb-1(1/1), Hb-1(1/2), Hb-I1(2/
2), and Hb-1(2/2b)]. They found the highest oxygen
affinity for Hb-1(2/2b), suggesting that this type is a
more efficient oxygen binder at high temperatures,
supporting the results of Fyhn & al. (1994) that thistype
ismorerestricted to coastal and warmer water and, thus,
a good marker for the coastal cod population.

The fact that there seems to be a haemoglobin
genotype-dependent variation in physiological traits
(Neevda & al. 1992; Brix & al. 1998) and haemoglobin
polymorphism in cod might be utilized in aguaculture
production. Similar results have been found for
turbot, and Imsland & al. (2000) suggested that a
genotype-dependent growth rate in turbot variation
between the haemoglobin genotypes might reflect
differences in metabolic capacity rather than metabolic
efficiency. This is supported by the results of Imsland
& a. (1997) and Samuelsen & a. (1999), who showed
that Hb-1(2/2) binds dissolved oxygen in the water
more efficiently, thus increasing the metabolic capacity
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of the fish. This suggests that the co-variation between
haemoglobin genotypes and growth may be of some
valuein future breeding programmes of turbot. Imsland
(1999) and Imsland & al. (2000) suggested that the
haemoglobin variations may represent quantitative trait
loci in turbot. Much the same is true for Atlantic cod
and the possible use of haemoglobin variation could
be included in future breeding programmes of Atlantic
cod.

Differences in physiological and behavioural proper-
ties of the cod haemoglobin genotypes (Karpov &
Novikov 1980; Naevda & al. 1992; Salvanes & Hart
2000) and differences in age at maturity and within-
season spawning time (Mork & Sundnes 1985 and
references therein) are probably best explained by
natural selection (Mork & Gisever 1999). However,
no clear indication of directional selection on haemo-
globin genotype distribution has been seen when
comparing early anayses of cod haemoglobin in
Norwegian waters (Frydenberg & al. 1965; Madller
1968) with corresponding analyses in recent years
(Jorstad & Naevdal 1989; Gjagsater & a. 1992; Dahle
& Jorstad 1993; Fyhn & al. 1994; present study). This
does not disprove the action of selection forces, but it
does show that the stability of the gene frequencies is
high enough to use these frequencies as genetic
population markers in cod (Jarstad & Naavdal 1989).
However, it would be very interesting to monitor these
gene frequencies in the near future, especialy with
concerns about global climatic change and its effect on
cod stocks (Portner & al. 2001). As the distribution of
these genotypes seems to mirror sea temperatures
(Petersen & Steffensen 2003), changes in sea temper-
atures should be reflected in changesin the geographical
cline (i.e. present study) of Hb-I frequencies. The
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